

CATHODE MATERIALS FOR NEXT GENERATION LITHIUM-ION BATTERIES: DESIGN, SYNTHESIS, AND CHARACTERIZATION OF LOW-COBALT CATHODES

Project ID: BAT251

JASON R. CROY

Argonne National Laboratory June 1-4, 2020

2020 DOE Vehicle Technologies Office Annual Merit Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start: October 1, 2018

■ End: September 30, 2021

■ Percent complete: 50%

Budget

- Total project funding: FY19 \$4.0M
- ANL, NREL, ORNL, LBNL, PNNL

Barriers

- Development of PHEV and EV batteries that meet or exceed DOE and USABC goals
 - Cost
 - Performance
 - Safety
 - Cobalt content

Partners

ANL, NREL, ORNL, LBNL, PNNL

Students supported from:

- University of Illinois at Chicago
- University of Rochester
- Oregon State University

Relevance

"The battery industry uses 42 percent of global cobalt production, while the rest is used in industrial and military applications, and all are competing for supply." – supplychainbrain.com

Cost, sustainability, and lack of mature alternatives are the major drivers for continued work in layered transition metal oxides

BatPaC Projected Cost for a 100kWh_{Total}, 80kW Battery Pack

- Layered transition-metal (TM) oxides represent the best option for near-term advancements for EV batteries
- Li-ion continues to grow and is likely to dominate the market for several decades to come
 - no guarantees with other technologies (Li-S, "Li-air", multivalent, solid state...)
- Major drivers (safety, energy, power, lifetime, cost) still have room to improve
- However, sustainability is a critical factor to the success of the predicted, massive future Li-ion market

Milestones

- This project seeks to make significant progress towards the realization of cobalt-free, TM-oxide cathodes for next-generation, Li-ion batteries
- The goals of cathode design are represented by two prototypical materials

NMC-622 serves as a baseline for minimum performance metrics (energy, power, impedance, retention) under project protocols for new low/no cobalt cathodes

LNO serves as a physiochemical baseline for high nickel, low cobalt cathodes based on LNO (gassing, thermal stability, surface reactivity)

Approach

- The team has developed a multithrust approach driven by cathode design and synthesis
- Each thrust has two designated leads and works in parallel, on the same materials, as the other thrusts
- All materials tested and characterized according to program protocols to identify promising strategies

Approach: Two main approaches, broadly categorized as:

LNO-based oxides (e.g. >90% Ni)

Why? Key Advantages

- Clearest path towards low/no cobalt cathodes
- LNO oxides deliver high rate/energy at modest voltages
- Well-layered even with with very low, or no, cobalt
- Long history of work to draw on

Disadvantages

- Thermal instability of LNO-based compositions is high
- Surface impurities from synthesis and/or storage can lead to poor performance and gassing
- Difficulty with reproducibility due to the sensitivity to synthesis conditions
- Long history of work very difficult to improve upon or go beyond what is already known

Mn-Rich oxides (e.g. LiNi_{0.5}Mn_{0.5}O₂)

Why? Key Advantages

- Increased Mn improves thermal stability
- Increased Mn decreases cost
- Decreasing Ni allows synthesis at higher temperatures for dense, strong particles and reproducibility
- Less prone to surface impurity issues

Disadvantages

- Mn⁴⁺ enhances anti-site exchange between Li⁺/Ni²⁺
- Too much exchange can decrease capacity/rate
- Increasing Mn usually implies increasing upper cutoff to achieve energy
- Mn dissolution can be a problem at graphite anodes

Development of optimized, high-performing LiNiO₂ as a physicochemical baseline:

- The structural and electrochemical properties of pure LiNiO₂ are extremely sensitive to synthesis conditions such as lithium content, oxygen partial pressure, calcination temperature, precursor morphology, and storage
- The behavior of LiNiO₂-based, high-energy cathodes can be better understood in light of pure LiNiO₂
- Pure LiNiO₂ has been re-visited with state-of-the-art co-precipitation and advanced characterization techniques

(Left) particle morphology of Ni(OH)₂ precursor powder, (middle) Rietveld refinement result of the optimized LiNiO₂ material, (right) evolution of the layered LiNiO₂ structure via a NiO rock salt and a lithiated spinel structure at low temperatures.

Much of the literature either shows poor performance for pure LNO or does not use pure LNO to benchmark LNO-based materials – hinders conclusions and usefulness of the data

- ~1% Li/Ni exchange from X-ray refinements
- >90% retention after 60 cycles at ~245 mAh/g

This is the best performance yet reported for pure LNO!

- As is known, LNO is extremely sensitive to all synthesis parameters and systematic studies must be undertaken if optimal performance is to be obtained also true for LNO-based derivatives (e.g., doping)
- Pure LNO can be made very well-layered with little Li/Ni exchange, achieve high-capacity and energy, and good cycling performance if synthesized in the correct manner

This LNO serves as a benchmark for the physiochemical properties of all other LNO-based oxides in the program in order to reveal any true differences/advantages over pure LNO

See also BAT252

Impact of Mn and Co substitution:

The calcination conditions for each LiNi_{1-x-y}Mn_xCo_yO₂ sample (x, y ≤ 0.1) were optimized

• $\text{LiNi}_{0.95}\text{Co}_{0.05}\text{O}_2$ (95-0-5), $\text{LiNi}_{0.9}\text{Mn}_{0.05}\text{Co}_{0.05}\text{O}_2$ (90-5-5), $\text{LiNi}_{0.9}\text{Mn}_{0.1}\text{O}_2$ (90-10-0) were scaled up for

Rietveld refinement results of the optimized NMC100-0-0, 95-0-5, 90-5-5, and 90-10-0 cathode samples show that the degree of Li/Ni anti-site exchange and c/a ratios increase with transition-metal substitution

Synthesis of LiNi_{0.92}Co_{0.06}Al_{0.02}O₂ via ALD method

- Al surface layer is introduced on the surface of (Ni,Co)(OH)₂ precursors by (1) ALD and (2) wet-chemistry coating methods before high temperature calcination
- Synchrotron XRD and ²⁷Al-MAS-NMR confirms that all of the Al on the precursor surface is incorporated in to the bulk lattice of LiNi_{0.92}Co_{0.06}Al_{0.02}O₂-ALD whereas only ¾ of the Al is doped into the structure of the LiNi_{0.92}Co_{0.06}Al_{0.02}O₂-Wet sample

Sample	Al overall, ICP [mol%]	Al in bulk, NMR [mol%]
2% AI – Wet	2	1.56
2% AI – ALD	2	2

The linear correlation between the lattice parameter (XRD) and bulk Al content (Al MAS NMR) data of the $LiNi_{0.94-x}Co_{0.06}Al_xO_2$ samples highlights the effective Al bulk doping by the ALD method

NC946: LiNi_{0.94}Co_{0.06}O₂

NCA9262-W: LiNi_{0.92}Co_{0.06}Al_{0.02}O₂-Wet NCA9262-A: LiNi_{0.92}Co_{0.06}Al_{0.02}O₂-ALD

Half-cell; V = 4.4 - 2.8 V vs. Li; 3 formation cycles @C/10 followed by 100 cycles @C/5 (1C=180mA/q)

√ Capacity retention

Electrochemical properties of LiNi_{0.92}Co_{0.06}Al_{0.02}O₂ prepared via ALD doping method

Al incorporation into the bulk lattice modifies the electrochemical properties of LiNi_{0.94-x}Co_{0.06}Al_xO₂:
(1) increased charge/discharge voltage, (2) better cycling stability

The ALD doping method results in more effective Al bulk doping and hence the highest performance enhancement

LiNiO₂

60

70

LiNiO₂: Single Crystals & Dopants

- LNO and 5% TM-substituted LNO samples with truncated polyhedron (Tpoly) and octahedron (Oct) morphologies have been prepared
- Dominating surface is (104) for T-poly and (012) for Oct
- Similar performance as shown for co-precipitated samples added complexity of facet-dependent/morphological influence has important implications for single crystal design for practical application
- Collaboration with Theory Group to understand dopants in terms of facetdependent synthesis, segregation, and influence on surface and bulk stability

- Within NMC-811 secondary particles, packing of the primary particles leads to different grain boundary structures
- Liquid electrolyte will penetrate the loose or wider opening grain boundaries, but will not penetrate the densely-packed grain boundaries
- Observed that boundary contact with liquid electrolyte leads to a thick surface reconstruction layer not the case for surfaces that do not contact liquid electrolyte
- Controlling the penetration of liquid electrolyte along the grain boundary will be a critical step for enhancing the stability of secondary, cathode particles

Panel A: Cross sectional SEM and STEM image showing different types of grain boundaries in secondary cathode particles

Panel B: The grain boundary in direct contract with the liquid electrolyte shows a thick surface layer of phase transition upon battery cycling

Panel C: The grain boundary does not come in contact with the liquid electrolyte, showing a thin surface reconstruction layer upon battery cycling

Technical Accomplishments: Mn-Rich oxides

900 C

30 C

~1-3% exchange

predicted by

calculation for

 $LiMn_{0.5}Ni_{0.5}O_2$

How to achieve in

practice?

+6h hold

325 C

In situ synchrotron diffraction (APS) - Phase evolution of a $Mn_{0.5}Ni_{0.5}(OH)_2+LiOH\cdot H_2O$ mixture during calcination

(See also BAT253)

Detailed theoretical and experimental studies are in progress leading to new insights on Li/Ni exchange in Mn rich, layered oxides

Technical Accomplishments: Mn-Rich oxides

- Li/Ni anti-site exchange is a critical issue for compositions with significant Mn and Ni
- Our work has shown that exchange takes place almost exclusively in the TM-rich regions of Li/Mn-rich compositions
 - By careful control of Li:Mn:Ni:Co ratios, the layering effects of Co³⁺ can be 'directed' to regions of interest and alleviate exchange, even at low Co levels

Compositions of just ~3-5% excess Li and Mn:Ni:Co ratios of ~35:60:05 show Li/Ni exchange on par or better than NMC-622, even with ~15% less cobalt and more manganese

Croy et al., J. Power Sources, 440, 227113 (2019)

Performance

Technical Accomplishments: Mn-Rich oxides

- Substantial improvements over the prototypical Co-free, $LiMn_{0.5}Ni_{0.5}O_2$ have been realized with just 5% Co by understanding the effects of local ordering on composition
- These oxides have energy and impedance characteristics similar to NMC-622
- Preliminary results show that rate/power performance is also high

Cathode design and synthesis efforts have led to the development of cathodes that perform on par with commercial NMC-622 but have 15% less cobalt and 15% more manganese – important implications for cost, safety, and sustainability

The Cathode Design and Synthesis component of this project has:

Summary

- Re-examined pure LiNiO₂ from a synthesis perspective and produced a material that outperforms all LiNiO₂ reported in the literature to date this cathode is serving as a new physiochemical baseline for understanding and modifying the true properties of LNO-based cathode oxides
- **Re-examined Al as a dopant** in LNO-based structures with respect to synthesis and characterization typical methods were found to give improved performance over untreated samples, however, detailed characterization revealed and non-uniform distribution of Al A new method of using atomic layer deposition to uniformly dope the bulk of cathode particles was developed and proven to give uniform substitution and further enhancements to cycling performance
- **Developed synthesis procedures** for the fabrication of pure and doped, single-crystal LiNiO₂ collaboration with theory is examining the effect of morphology/faceting and dopant segregation on electrochemical properties
- **Used a detailed understanding** of how composition effects local ordering to develop a cathode consisting of ~35% Mn⁴⁺ and ~60% Ni while maintaining low Li/Ni exchange with just ~5% Co these cathodes perform on par with commercially available NMC-622 this result has important implications for cost, safety, and sustainability
- Uncovered through advanced microscopy the important role that grain boundaries play in electrochemical degradation
- **Delivered more than 10 baseline compositions** to the different project thrusts for detailed investigation
- These efforts have been an **intensive collaboration** between cathode PIs across four national labs, the *Materials*Research and Engineering Facility (MERF), the *Cell Modeling and Prototyping Facility* (CAMP), and User facilities such as the *Advanced Photon Source* and the *Environmental and Molecular Sciences Lab*

Future Work

- Development of surface modifications in the form of coatings, treatments, and dopants that can suppress surface and performance degradation in working cells
- Detailed characterization utilizing element-specific spectroscopies, such as NMR and XAS, as well as diffraction techniques to examine the synthesis-structure-property relationships that govern newly developed, low/nocobalt cathodes – including single crystals and doped derivatives
- Continued collaboration with theory and modeling on the effects of low-level substituents in LNO-based cathodes
- Scale up (~1kg) two promising cathode oxide compositions for larger-format cell builds and evaluation under project protocols including LNO-based and 'high-Mn' LNMO-based compositions

Next-Gen Cathode Project Contributors

Collaboration and Coordination

- Daniel Abraham
- Khalil Amine
- Mahalingam Balasubramanian
- Ilias Belharouak
- Ira Bloom
- Anthony Burrell
- Guoying Chen
- Jiajun Chen
- Lina Chong
- Devika Choudhury
- Jason Croy
- Dennis Dees
- Fulya Dogan
- Alison Dunlop
- Jessica Durham
- Jeff Elam
- Juan Garcia
- Linxiao Geng
- Jihyeon Gim
- Arturo Gutierrez
- Yeyoung Ha
- Sang-Don Han

- Kevin Hays
- Hakim Iddir
- Andrew Jansen
- Christopher Johnson
- Ozge Kahvecioglu Feridun
- Minkyung Kim
- Joel Kirner
- Eungje Lee
- Linze Li
- Xuemin Li
- Chen Liao
- Oian Liu
- Jun Lu
- Wenquan Lu
- Mei Luo
- Anil Mane
- Jagjit Nanda
- Nate Phillip
- Bryant Polzin
- Krzysztof Pupek
- Yan Qin
- Yang Ren

- Marco Rodriguez
- Aryal Shankar
- Boyu Shi
- Woochul Shin
- Ilya Shcrob
- Seoung-Bum Son
- Adam Tornheim
- Stephen Trask
- Bertrand Tremolet de Villers
- John Vaughey
- Anh Vu
- Chongmin Wang
- Jianzhong Wang
- David Wood
- Zhenzhen Yang
- Junghoon Yang
- Jianzhong Yang
- Haotian Zheng
- Lianfeng Zhou

Major Research Facilities

- Materials Engineering Research Facility
- Post-Test Facility
- Cell Analysis, Modeling, and Prototyping
- Spallation Neutron Source
- Environmental Molecular Sciences Laboratory
- Advanced Light Source
- Battery Manufacturing Facility
- Advanced Photon Source (APS)
- Laboratory Computing Resource Center (ANL)
- NMR Spectroscopy Lab (ANL)

- National Energy Research Scientific Computing Center (LBNL)
- Stanford Synchrotron Radiation Light Source

Support for this work from the ABR Program, Office of Vehicle Technologies, DOE-EERE, is gratefully acknowledged – Peter Faguy, David Howell

